Introduction to Polynomials

Monomial

- A numeral, variable, or combination of numeral & one or more variables.
- Monomial with no variable is called a constant.
- Which of the following are monomials?

Coefficient

- Numeral factor in a monomial
- Give the coefficient of each:

$$-ab \qquad \frac{2x}{3} = \frac{2}{3} \times \frac{mn}{4} \qquad h$$

Degree of a Monomial

- Sum of the exponents of the variables.
- Find the degree of each:

$$3x^{5}y^{1}$$
 $-2x^{3}z^{2}$ $54x^{0}$
 $5+1=6$ $1+1+1$ $54\cdot 1$
 5^{1} degree 3^{1} degree 3^{1} degree 3^{1}

Polynomials

• Example:

Degree of polynomial is the same as the term with the greatest degree

degree:
$$\frac{3x^4-2x^3-x^2+8x-9}{2}$$

Polynomial: degree = 4

 $\frac{3x^2y^4-2x^3+3xy}{2}$

Alegree = 6

Polynomials can be named by their degree:

For a polynomial with one Variable, the degree is the ligst degree of that variable.

Degree	Name	Example
0	Constant	3
١	Linear	2x+1
2	Quadratic	x2-4x
3	Cubic	2x3-X+4
4	Quartic	3×4-5
5	Quintic	X + 3x - 10
6+	6th degree.	X6

Classify by number of Terms

Terms are always Separated by add & Subtract

Terms	Name	Example
ı	Monomial	<i>3</i> ×
a	Binomial	x-4
3	Trinomial	$x^{2}+2x+3$
4+	4 term Dolynomial	$x^{4}+x^{2}+x+10$

Let's Practice! Name the following polynomials:

-7+3n³ Cubic binomial

5 Constant monomial

-x⁴+3x²-11 Quartic Trinomial

Classify by degree & # terms

$$3x^2 - 2x^3 - 7$$
Cubic trinomial

$$x^5 - x^3 + 2x^5$$
 $3x^5 - x^3$ Simplify:

Quintic binomial

Evaluate for
$$x = -3$$

Evaluate $f(-3)$
 $f(x) = -x^2 - 3x + 2$
 $f(-3) = -(-3)^2 - 3(-3) + 2$
 $-9 + 9 + 2$
 $f(-3) = 2$

Evaluate for x = 4

$$x^3 - x^2 - x + 5$$

Find the sum:

$$(6x^3 + 3x^2 - 7) + (8 - 2x - 6x^2 + 2x^3)$$

 $6x^3 + 3x^2 - 7 + 8 - 2x - 6x^2 + 2x^3$
 $8x^3 - 3x^2 - 2x + 1$

Cubic 4 term polynomial

Find the difference:

$$(8x^{3} - 4x^{2} + 5x - 1) - (3 - 3x + 2x^{2} + 2x^{3})$$

$$8x^{3} - 4x^{3} + 5x - 1 - 3 + 3x - 2x^{3} - 2x^{3}$$

$$6x^{3} - 6x^{2} + 8x - 4$$

Find the product:

$$(2x^2-5x+2)(3x^2-2x+10)$$

$$6x^{4} - 4x^{3} + 20x^{2}$$
 $-15x^{3} + 10x^{2} - 50x$
 $6x^{2} - 4x + 20$